
Tuples

See Section 6.4 of the Notes



We know lists are mutable structures.  This means 
the data in a list can be changed after the list is 
created.  For example, the following code:

L = [1, 2, 3]
L[1] = "two"

changes list L to [1, "two", 3].  Strings aren't 
mutable; you will get an error message from the 
following code:

s = "bob"
s[1] = 'u'



Tuples are immutable structures similar to lists.  
Instead of square brackets, tuples use round backets
-- parentheses.  For example, (1, 2, 3) is a tuple with 
3 elements.  (2,) is a tuple with just one element.  ( ) 
is the empty tuple with no elements.



What will this print?
def main():

T = (1, 2, 3)
foo(T)
print(T)

def foo(T):
for i in T:

print(i)

A
1
2
3
(1, 2, 3)

B
1
2
3

C
(1, 2, 3)

D
Nothing; it causes an 
error.



What will this print?
def main():

T = (1, 2, 3)
foo2(T)
print(T)

def foo2(T):
T = (4, 5)
return T

A
(1, 2, 3)

B
(4, 5)

C
(4, 5)
(1, 2, 3)

D
Nothing; it causes an 
error.



What will this print?
def main():

T = (1, 2, 3)
foo3(T)
print(T)

def foo3(T):
T[0] = 34

A
(34, 2, 3)

B
(1, 2, 3)

D
It causes 
an error

C
(34, 2, 3)



Why, and when, would you use tuples instead of 
lists?  Here are two situations:

a) Sometimes you need immutable types.  For 
example, the keys of a dictionary must be 
immutable. You can't use lists as dictionary keys, 
but you can use tuples.

b) Tuples are simpler and take up less memory 
space than lists.  If you have a program that 
stores lots of points with (x,y) coordinates, it is 
more efficient to store them as tuples than as 
lists.


